Iterative learning control scheme for manipulators including actuator dynamics

نویسندگان

  • S. Gopinath
  • I. N. Kar
چکیده

This paper presents the iterative learning control for the industrial robot manipulators including actuator dynamics. Motivated by human learning, the basic idea of iterative learning control is to use information from previous execution of a trial in order to improve performance from trial to trial. This is an advantage, when accurate model of the system is not available as friction and actuator dynamics, though present in the system, are not modeled to reduce the computational complexity. In this paper different aspects of ILC including the design schemes and control algorithms are covered. The learning control scheme comprises two types of control laws: a linear feedback law and a feed-forward control law. In the feedback loop, the fixed gain PD controller provides stability of the system and keeps its state errors within uniform bounds. In the feed-forward path, a learning control rule/strategy is exploited to track the entire span of a reference input over a sequence of iterations. Algorithms are verified through detailed simulation results on a two DOF robot manipulator. 2004 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iterative Learning Control Scheme for Manipulators

This paper presents the iterative learning control for the industrial robot manipulator that performs repeated tasks. Motivated by human learning, the basic idea of iterative learning control is to use information from previous execution of a trial in order to improve performance from trial to trial. This is an advantage, when accurate model of the systems is not available. In this paper differ...

متن کامل

Direct adaptive fuzzy control of flexible-joint robots including actuator dynamics using particle swarm optimization

In this paper a novel direct adaptive fuzzy system is proposed to control flexible-joints robot including actuator dynamics. The design includes two interior loops: the inner loop controls the motor position using proposed approach while the outer loop controls the joint angle of the robot using a PID control law. One novelty of this paper is the use of a PSO algorithm for optimizing the contro...

متن کامل

Nonlinear Stabilizing Controller for a Special Class of Single Link Flexible Joint Robots

Joint flexibility is a very important factor to consider in the controller design for robot manipulators if high performance is expected. Most of the research works on control of flexible-joint robots in literature have ignored the actuator dynamics to avoid complexity in controller design. The problem of designing nonlinear controller for a class of single-link flexible-joint robot manipulator...

متن کامل

Sliding Mode Control of Robot Manipulators via Intelligent Approaches

1.1 Robot manipulators Robot manipulators are well-known as nonlinear systems including strong coupling between their dynamics (Craig, 1996). These characteristics, in company with: 1) structured uncertainties caused by model imprecision of link parameters, payload variation, etc., and 2) unstructured uncertainties produced by un-modeled dynamics –such as nonlinear friction and external disturb...

متن کامل

An Adaptive-Robust Control Approach for Trajectory Tracking of two 5 DOF Cooperating Robot Manipulators Moving a Rigid Payload

In this paper, a dual system consisting of two 5 DOF (RRRRR) robot manipulators is considered as a cooperative robotic system used to manipulate a rigid payload on a desired trajectory between two desired initial and end positions/orientations. The forward and inverse kinematic problems are first solved for the dual arm system. Then, dynamics of the system and the relations between forces/momen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004